
Porting NetBSD to JavaStation–NC

Valeriy E. Ushakov

<uwe@ptc.spbu.ru>

Abstract

Porting NetBSD to a new platform that has its

CPU already supported is simplified by clean in-

terfaces of the NetBSD kernel and a wide range of

machine–independent drivers for different buses

and devices. This paper summarizes experience in

porting NetBSD to the JavaStation–NC and gives

an overview of machine–dependent code that was

necessary.

1. Introduction

The JavaStation–NC is a network comput-

er class machine built on the microSPARC–IIep

processor. The microSPARC–IIep is a sun4m

with an integrated PCI controller [3]. This makes

it unique amongst 32-bit sparc systems as other

sun4c and sun4m models are SBus-based. It is

sufficiently similar to sun4m to reuse much of the

existing code and sufficiently different to require

a non-trivial porting effort. Generic and flexible

machine–independent infrastructure and drivers

provided by NetBSD were crucial to completing

the port in short time despite the author’s lack of

any previous experience with NetBSD kernel in-

ternals.

It is hoped that this experience will be in-

teresting to people who need a modern OS for

the device they develop or to enthusiasts who

want to port BSD to their favorite gadget. Since

NetBSD already supports almost all modern (and

not so modern) processors, chances are that most

of the hard work, like MMU and cache support,

is already done. Most likely there are already

machine–independent device drivers for some of

the devices found in the target platform, thus fur-

ther reducing your porting time and costs.

Porting NetBSD to a completely new plat-

form is described in [2] that also outlines key fea-

tures of NetBSD that contribute to its great porta-

bility.

2. The target machine

In late 1990s Sun was aggressively pushing

the concept of “Network Computer”. It developed

several network computer class machines of which

only two were more or less widely available in the

wild — JavaStation-1, codename “Mr. Coffee”,

and JavaStation–NC, codename “Krups”1. All

JavaStations were shipped with JavaOS.

Mr. Coffee is a “chimeric” machine. It is a

straight sun4m, except equipped with commodity

PS/2 keyboard and mouse. It uses the Sun TCX

framebuffer, but the video connector is standard

15-pin VGA D-SUBso that it can be used with any

PC monitor.

For Krups, Sun used the microSPARC–IIep

processor, where ‘e’ stands for “embedded”

and ‘p’ stands for “PCI”. Being “embedded”,

the microSPARC–IIep is very low–heat, so

Krups has no fan, making it a dead-silent ma-

chine. Its integrated PCI controller makes the

microSPARC–IIep unique amongst other 32-bit

sparc machines, but in all other respects it is a

SPARC v8. Krups uses a PCIO chip that provides

“Happy Meal” Ethernet and EBus (8-bit peripheral

bus). The latter is used to connect PS/2 keyboard

and mouse, the serial port, and CS4231 audio.

NetBSD/sparc already had complete sup-

port for SPARC v8 MMU and caches, so when the

Krups port was started, most of the hard stuff was

already there. As far as peripherals are concerned,

Krups is sufficiently similar to PCI-based Sun Ul-

tra machines, so the plan was to reuse as much de-

vice support code from NetBSD’s sparc64 port as

possible.

3. Firmware and boot loader

The first thing that was needed was a boot

loader. Like Ultra machines Krups uses Open

Firmware (OFW). Fortunately, NetBSD/sparc port

already borrowed OFW support from the sparc64

port, though there were few minor bugs and miss-

ing bits here and there because JavaStations are

probably the only 32-bit sparcs with OFW and so

the OFW support had just never been tested in the

32-bit sparc port (other 32-bit sparcs use Open

Boot PROM (OBP), a predecessor of OFW).

The nasty surprise was that OFW in Krups

has many quirks. The worst one was that

OFW, in violation of the standard, was locat-

ed at f000.0000 — the address at which the

NetBSD/sparc kernel expects to be loaded. Nor-

1This paper will refer to JavaStations by their codenames for

brevity and clarity.



mally, OFW is located in high virtual addresses,

so the NetBSD/sparc kernel has a fundamental as-

sumption that it has the space between its own end

and the beginning of OFW at its disposal. As a

workaround the kernel was relocated to a lower ad-

dress and memory bootstrap code was tweaked to

start its heap past OFW. This is a kludge, but it re-

quired changing only few lines in a couple of files

and all was ready to proceed with porting, leaving

the question of how to properly deal with this situ-

ation to a better time. This work was actually done

on a Mr. Coffee that also had OFW with this prob-

lem, but had the benefit of having a minimal work-

ing support already, so it was easy to test the kernel

relocation on it with otherwise working kernel.

There were also a few other problems, mostly

related to device nodes and their properties. To

avoid polluting the kernel with numerous special

cases and workarounds for OFW quirks, the boot

loader was modified to “patch” the OFW before

loading the kernel. Since OFW is a full-fledged

Forth environment, this was easily achievable with

small pieces of forth code that boot loader passes

to OFW to execute.

Linux took a different path. Pete Zaitcev im-

plemented PROLL, a small OBP simulator that

provided to the kernel the device tree and a min-

imal subset of OBP entry points that Linux sparc

kernel used. PROLL completely replaces ma-

chine’s OFW. However having OFW around is

quite handy to be able to inspect hardware state in-

teractively, so for the NetBSD port, the case was

decided in favor of OFW despite the necessary

kludges described above.

4. Overall port plan

When the boot loader is written the next mile-

stone is to mount the root filesystem. There are

two popular choices. One possibility is to embed

a minimal root filesystem into the kernel, the oth-

er is to mount root from NFS server. For both ap-

proaches, some sort of console support is required,

and for the diskless boot, a network driver is also

necessary. The latter approach is often attractive

because once the network driver is complete the

system will be able to boot multiuser directly with

both root and swap on NFS, thus passing two mile-

stones in one leap.

NetBSD/sparc can use firmware for its con-

sole input and output. As noted in the previous sec-

tion OFW support was completed during the work

on the boot loader and as that code is shared by the

boot loader and the kernel the console was func-

tional even before the kernel can do anything use-

ful. That was very helpful during development of

early kernel bootstrap code.

Happy Meal Ethernet at PCI is support-

ed by the hme (4) driver, so diskless boot was

chosen for the next milestone. Thus the only

things missing were the most low level code to

deal with interrupts, timers and the like, and the

machine–dependent parts of the PCI framework.

5. Low level code

The microSPARC–IIep has totally different

system registers to raise software interrupts, report

pending interrupts, control system and processor

timers, etc. While learning the intricacies of sys-

tem operation and writing support for those low

level things was, perhaps, the most interesting part

of the project, it is also the most boring part of the

project to describe, so this section will only give a

short summary of things done.

While some assembly hacking was required,

only three short assembler routines were written.

sparc_interrupt4m — the interrupt trap han-

dler. raise() — the function to raise a software

interrupt. microtime() — the function that re-

ports current time in µs.

There is, actually, another assembler routine

that needs to be written but hasn’t been yet — the

routine to handle non-maskable interrupts that in-

dicate system malfunction. But it is not necessary

for the normal system operation after all, so it was

postponed to some later time.

Bootstrap code and the initial autoconfigu-

ration process were tweaked to reflect new CPU

variant support. Details of mapping between PCI

and physical address spaces and interrupt routing

were encapsulated in a driver that provided usual

bus_space (9) interface [1]. Finally, kernel clocks

that use system and processor counterswere imple-

mented.

6. PCI framework

NetBSD has a machine–independent PCI

framework that needs only few typedefs and func-

tions provided by the machine–dependent code2.

These are usually declared in the port’s <ma-

chine/pci_machdep.h> header file. Please re-

fer to pci (9) and pci_intr (9) for function sig-

natures.

2 Section 9 of the NetBSD manual does not (yet) fully doc-

ument what types and functions must be provided by

machine–dependent PCI code. This section is intended to sum-

marize the current situation.



An important type that the port must define is

pci_chipset_tag_t. It is a chipset tag for the

PCI bus. Effectively, it describes a root for a hi-

erarchy of PCI buses. The chipset tag is passed to

almost all machine–dependent functions described

below.

Since the microSPARC–IIep has an integrat-

ed PCI controller there is no need to provide for

different possible PCI chipsets, and the chipset

tag just carries some private data. But e.g. on Al-

pha the chipset tag also contains pointers to func-

tions that implement machine–dependent methods

for each PCI chipset that can be found in Alpha

machines.

6.1. Autoconfiguration

pci_attach_hook()

The hook called right before each pci bus is

attached during autoconfiguration.

pci_bus_maxdevs()

Returns a maximum number of devices for

the given PCI bus.

pci_enumerate_bus()

Necessary if the port needs some special bus

enumeration. For the microSPARC–IIep, it is

a macro that just calls machine–independent

pci_enumerate_bus_generic().

6.2. Device tags

pcitag_t

Configuration tag describing the location and

function of the PCI device. Opaque to the

PCI framework. On sparc, the pcitag_t is a

64-bit integer that encodes OFW device node

for this PCI device and the tuple <bus, device,

function> in a form used for PCI configura-

tion accesses.

pci_make_tag()

Construct pcitag_t value for bus, device,

function.

pci_decompose_tag()

Return bus, device, function for the PCI tag.

6.3. Conf space access

pci_conf_read() and pci_conf_-

write() are used to access PCI configuration

space. The microSPARC–IIep uses standard

mode 1 configuration accesses so implementation

of these function is straightforward.

6.4. Interrupt manipulation

pci_intr_handle_t

A handle describing an interrupt source.

Opaque to the PCI framework that uses the

following functions to manipulate interrupts.

pci_intr_map()

The function takes a pointer to struct

pci_attach_args and maps it to a

pci_intr_handle_t.

pci_intr_string()

Returns a string describing interrupt source

that the driver can use if it wishes to refer to

it in an attach or error message.

pci_intr_establish()

Actually establish the interrupt handler

for pci_intr_handle_t mapped with

pci_intr_map. Returns a cookie that can be

passed to pci_intr_disestablish().

pci_intr_disestablish()

Disestablish the interrupt handler previously

established with pci_intr_establish().

pci_intr_evcnt()

Returns the event counter that is the parent

for all interrupt–related counters associated

with the given PCI bus hierarchy. Refer to

evcnt (9) for the description of the NetBSD

generic event counter framework.

7. First boot

After the steps outlined in preceding sections

were completed, the Krups was able to boot mul-

tiuser off the NFS. Of course it lacked a lot of de-

vice drivers, most annoying was the lack of driver

for the time–of–day clock that in Krups is connect-

ed via EBus, but nonetheless the machine was self-

hosting at this point.

It took about a month from the beginning of

the project to the first boot. However it should be

noted that this was author’s very first experience

with both NetBSD kernel programming and with

programming something that low–level. A sea-

soned NetBSD hacker could have probably done it

in under a week.

While clean interfaces of the NetBSD kernel

that support code portability were crucial in com-

pleting the Krups port very quickly, they also al-

lowed this small project to contribute back to the

NetBSD more then just yet another platform sup-

port. The remainder of this article gives some ex-



amples of code that was developed for Krups, but

was immediately useful for other platforms.

8. Audio

Device drivers in NetBSD are split into

bus–independent code that drives the device and

bus–specific attachment code. Bus–independent

code uses bus_space (9) abstraction layer [1].

While EBus is commonly found in PCI-based Ul-

tra machines and NetBSD/sparc64 has a driver

for it, unfortunately the driver can not be used for

Krups because OFW properties of EBus bus node

and its children are very different and often incom-

plete in Krups. However it is desirable to share the

EBus–specific drivers’ attachment code between

two sparc ports.

A notable example is audiocs (4), a driver

for CS4231 audio that is found under both SBus

and EBus in sparc and sparc64 machines. At

the time the driver supported only SBus and only

playback. Some rudimentary EBus support was

written for sparc64 but was far from complete.

Also some SBus specific code was polluting the

machine–independent part of the driver.

The driver was refactored so that bus–specific

details are removed from machine–independent

code and EBus playback support was completed.

At that point it turned out that the driver internal

interfaces allow to add capture support almost triv-

ially. This is a good smaller–scale example of how

clean interfacesof the NetBSD kernel contribute to

its unparalleled portability by greatly simplifying

development.

The refactored driver was developed on Java-

Stations, Mr. Coffee (SBus) and Krups (EBus), and

when it was complete the sparc64 port automatical-

ly got full CS4231 support as well.

9. Graphic card

The graphic chip in Krups is IGA 1682

from Integraphics Systems (now Tvia). Fortu-

nately, the good folks at Tvia kindly provid-

ed technical docs for it. It was decided to use

the machine–independent “workstation console”

subsystem (wscons (9)) for it. The rest of the

NetBSD/sparc port doesn’t use wscons yet, but ws-

cons is intended as the standard console subsystem,

and there was no existing code for the IGA 1682

at the time, so it made sense to write the new driv-

er to support the intended standard. As a side note

— compare this to Mr. Coffee, that uses Sun TCX

framebuffer for which the driver already exist. For

Mr. Coffee it was faster to develop PS/2 keyboard

and mouse drivers that conformed to old Sun inter-

faces. That made Mr. Coffee supported with stock

Xsun (4) binary.

For writers of framebuffer drivers NetBSD

provides generic raster operations (rasops (9))

that implement text rendering and unaccel-

erated blitting. The driver shall implement

wsdisplay (9) interface so that that upper layers

of wscons can attach to it. With completion of the

drivers, Krups got a real console.

More recent Integraphics chips, Cyber-

Pro2000 series, are also used in several other ma-

chines that NetBSD runs on. Matt Thomas provid-

ed a Corel Netwinder machine for developing Cy-

berPro support in the driver. It turned out that only

minimal extensions were required. The biggest

problem was that a complete chip init is required

for Netwinder, a task that on Krups is performed

by the firmware and so can be skipped in the driv-

er. Details of the chip initialization (on which In-

tegraphics docs are extremely scarce) were mostly

learned from the Forth code of Krups firmware.

10. Acknowledgements

Pete Zaitcev, who did the Linux port to the

microSPARC–IIep, kindly provided a lot of hints

on hardware operation. Matthew Green, Eduardo

Horvath and Paul Kranenburg provided valuable

insights into obscure corners of the low level sparc

code. Eduardo Horvath and Jason Thorpe helpful-

ly clarified details of generic NetBSD kernel inter-

faces, the PCI subsystem in particular, and patient-

ly replied to numerous questions. Martin Huse-

mann has done a lot of testing and debugging for

Krups in general and for audiocs (4) on sparc64

as well.

References

[1] Chris Demetriou. bus_space (9) manual

page. Originally in NetBSD 1.3, 1997.

[2] Frank van der Linden. Porting NetBSD to the

AMD x86-64: a case study in OS portability.

In Proceedings of the BSDCon 2002 Confer-

ence. Usenix, 2002.

[3] Sun Microelectronics. microSPARC –IIep

User’s Manual. Part number #802-7100-01.

Sun Microsystems, April 1997.


